3.1014 \(\int \frac{\cos (c+d x) (A+B \sin (c+d x))}{(a+a \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=44 \[ \frac{B \log (\sin (c+d x)+1)}{a^2 d}-\frac{A-B}{d \left (a^2 \sin (c+d x)+a^2\right )} \]

[Out]

(B*Log[1 + Sin[c + d*x]])/(a^2*d) - (A - B)/(d*(a^2 + a^2*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0678509, antiderivative size = 44, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.069, Rules used = {2833, 43} \[ \frac{B \log (\sin (c+d x)+1)}{a^2 d}-\frac{A-B}{d \left (a^2 \sin (c+d x)+a^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + B*Sin[c + d*x]))/(a + a*Sin[c + d*x])^2,x]

[Out]

(B*Log[1 + Sin[c + d*x]])/(a^2*d) - (A - B)/(d*(a^2 + a^2*Sin[c + d*x]))

Rule 2833

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) (A+B \sin (c+d x))}{(a+a \sin (c+d x))^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{A+\frac{B x}{a}}{(a+x)^2} \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{A-B}{(a+x)^2}+\frac{B}{a (a+x)}\right ) \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac{B \log (1+\sin (c+d x))}{a^2 d}-\frac{A-B}{d \left (a^2+a^2 \sin (c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.0733169, size = 41, normalized size = 0.93 \[ \frac{\frac{B \log (\sin (c+d x)+1)}{a}-\frac{A-B}{a \sin (c+d x)+a}}{a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + B*Sin[c + d*x]))/(a + a*Sin[c + d*x])^2,x]

[Out]

((B*Log[1 + Sin[c + d*x]])/a - (A - B)/(a + a*Sin[c + d*x]))/(a*d)

________________________________________________________________________________________

Maple [A]  time = 0.048, size = 56, normalized size = 1.3 \begin{align*} -{\frac{A}{d{a}^{2} \left ( 1+\sin \left ( dx+c \right ) \right ) }}+{\frac{B}{d{a}^{2} \left ( 1+\sin \left ( dx+c \right ) \right ) }}+{\frac{B\ln \left ( 1+\sin \left ( dx+c \right ) \right ) }{d{a}^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+B*sin(d*x+c))/(a+a*sin(d*x+c))^2,x)

[Out]

-1/d/a^2/(1+sin(d*x+c))*A+1/d/a^2/(1+sin(d*x+c))*B+B*ln(1+sin(d*x+c))/a^2/d

________________________________________________________________________________________

Maxima [A]  time = 1.02342, size = 58, normalized size = 1.32 \begin{align*} -\frac{\frac{A - B}{a^{2} \sin \left (d x + c\right ) + a^{2}} - \frac{B \log \left (\sin \left (d x + c\right ) + 1\right )}{a^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sin(d*x+c))/(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-((A - B)/(a^2*sin(d*x + c) + a^2) - B*log(sin(d*x + c) + 1)/a^2)/d

________________________________________________________________________________________

Fricas [A]  time = 1.4452, size = 112, normalized size = 2.55 \begin{align*} \frac{{\left (B \sin \left (d x + c\right ) + B\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - A + B}{a^{2} d \sin \left (d x + c\right ) + a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sin(d*x+c))/(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

((B*sin(d*x + c) + B)*log(sin(d*x + c) + 1) - A + B)/(a^2*d*sin(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [A]  time = 1.0167, size = 121, normalized size = 2.75 \begin{align*} \begin{cases} - \frac{A}{a^{2} d \sin{\left (c + d x \right )} + a^{2} d} + \frac{B \log{\left (\sin{\left (c + d x \right )} + 1 \right )} \sin{\left (c + d x \right )}}{a^{2} d \sin{\left (c + d x \right )} + a^{2} d} + \frac{B \log{\left (\sin{\left (c + d x \right )} + 1 \right )}}{a^{2} d \sin{\left (c + d x \right )} + a^{2} d} + \frac{B}{a^{2} d \sin{\left (c + d x \right )} + a^{2} d} & \text{for}\: d \neq 0 \\\frac{x \left (A + B \sin{\left (c \right )}\right ) \cos{\left (c \right )}}{\left (a \sin{\left (c \right )} + a\right )^{2}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sin(d*x+c))/(a+a*sin(d*x+c))**2,x)

[Out]

Piecewise((-A/(a**2*d*sin(c + d*x) + a**2*d) + B*log(sin(c + d*x) + 1)*sin(c + d*x)/(a**2*d*sin(c + d*x) + a**
2*d) + B*log(sin(c + d*x) + 1)/(a**2*d*sin(c + d*x) + a**2*d) + B/(a**2*d*sin(c + d*x) + a**2*d), Ne(d, 0)), (
x*(A + B*sin(c))*cos(c)/(a*sin(c) + a)**2, True))

________________________________________________________________________________________

Giac [A]  time = 1.33329, size = 103, normalized size = 2.34 \begin{align*} -\frac{\frac{B{\left (\frac{\log \left (\frac{{\left | a \sin \left (d x + c\right ) + a \right |}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{2}{\left | a \right |}}\right )}{a} - \frac{1}{a \sin \left (d x + c\right ) + a}\right )}}{a} + \frac{A}{{\left (a \sin \left (d x + c\right ) + a\right )} a}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sin(d*x+c))/(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

-(B*(log(abs(a*sin(d*x + c) + a)/((a*sin(d*x + c) + a)^2*abs(a)))/a - 1/(a*sin(d*x + c) + a))/a + A/((a*sin(d*
x + c) + a)*a))/d